
AD-A173 435 ®\
EDA PAPER P-1893

Ada* FOUNDATION TECHNOLOGY

Volume IV: Software Requirements for WIS Text Processing Prototypes

Alan Shaw, Task Force Chairman
Murray Berkowitz, IDA Task Force Manager

Bill Brykczynski
Christopher Fräser

Edgar Irons
Marvin Zelkowitz

John Salasin, Program Manager

December 1986
DT\C
.ELECTS-'

Prepared for
Office of the Under Secretary of Defense for Research and Engineering

tor pahha rrf^mi ac4 r/uh, tu
dUtrtbuöi* la —Jaatn4 .—'

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Bcauregard Street. Alexandria. Virginia 223! 1

'Ada is a registered trademark of the U.S. Government, Ada Joint Program Office.

 ö 7 8 a u u p 3 IM l09 Ho HQ M-30821

The work reported In this document was conducted under contract
MDA 903 84 C0C31 for the D»{Mrtme(rt of DefenM.-RiB publica-
tion of tJjIs IDA Paper loot not indicate endorsement by the
Department of Defense, nor should the contents be construed as
reflecting the official position of that agency.

This paper has been reviewed by IDA to assure that It .'fleets
high standards of thoroughness, objectivity, and sound analytical
methodology and that the conclusions stem from the method-

Approved for public release, distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE /^ /«?/ 7 <f VJJ'
U REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b »KCt.ASSIEICATION/DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited

4 PER KOK.MING ORGANIZATION REPORT NUMBER(S)

P-1B93-Volume IV

5 MONITORING ORGANIZATION REPORT NUMBER(S)

«a NAME OK PERFORMING ORGANIZATION

Institute lor Defense Analyses

6 b OFFICE SYMBOL

IDA

7a NAME OF MONITORING ORGANIZATION

6c ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria. VA 22311

7b ADDRESS (City, State, and Zip Code)

ORGANIZATION

WIS Joint Program Management Office

«b OFFICE SYMBOL
(if applicable)

WIS/JPMO

• PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

MDA903 MC0031

10. SOURCE OK FUNDING NUMBERS 8c ADDRKSS (City, State, and Zip Code)

7796 Old Springfield Road
McLean. VA 22102

MOARAM—
ELEMENT NO.

PROJECT
NO.

TASK
NO.

T-W5-206

WORK UNIT
ACCESSION NO.

II TITLE (include Security Classification)

Ada™ Foundation Technology: Volume IV - Software Requirements tor WIS Text Processing Prototypes

12 PERSONAL AUTSIOR(S)
A. Shaw, M BorkowitZ. B. K^WWiS^i*a"'"* 14 DATE OF REPORT 175?, Month, bay)

1966 December

13a TYPE OF REPORT

Final

b

FROM TO

IS PAGE COUNT

46

16 SUPPLEMENTARY NOTATION

17 COSATl CODES

UL1± CfcQUP «m-ninn»

I* SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

World Wide Military Command and Control Sytfen fWWMCCS;. WWMCCS information System (WIS;.
automatic data processing (AOP). Ada programming language. CAIS, text processing, word
processing, text editor

1» ABSTRACT (Continue on reverse if necessary and identify by block number)

This document describes general requirements lor the WIS Text Processing System prototype project. The objective tor this eflort is the development ol
a complete Ada based 'document management" system with capaUH<es tor. but not limited to. word processing, providing output with multiple type lonts
and gsei-oriented "help" messages tailored to the operations being performed and user expertise In general, critical design issues include the loliowing a
The provision tor compatibility with multiple subsystems that may or may not have been completely defined and/or developed; b) The ability to use a variety
ol input, output Devices; c) The capability ol using textual syntax/semantics to provide assistance in document preparation; d; The ability to provide
user-onemed *hefc»' based on analyses of operations being performed (e.g.. code being executed) and user history expertise

Two sped!cations have been generated and support the stated objective of developing software in Ada to support WIS communications functionality m
the 1990s a) Specrtication tor Structure Generator Editor tor Documents. Programs and Other Structured Data; b) Specification lor a Writer's Workbench

This work is the result of the identification of the functionality requirements and research o; the technology base.
This volume is the fourth of a rune-volume set descntung projects which are planned tor prototype foundation technologies lor WIS using the Ada

programming language The other volumes include command language, software design, description and analysis tools, database management system
operating systems; planning and optimization toots; graphics, and network protocols

2» DISTRIIIITION/AVAII.ABILITY OF ABSTRACT

■ UNCLASSIFIED/UNLIMITEDO SAME ** RPT-D DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

 LBBASSBB.
22» NAME OK RESPONSIBLE INDIVIDUAL 22t TELEPHONE (Include Are» Code 22c OFFICE SYMBOL

DL) FORM 147J. 84 MAR 13 APR edition may be used until exhausted
All other edition» are obsolete

SECURITY CLASSIFICATION OK Tills r*\i.l

IDA PAPER P-1893

,TM Ada1M FOUNDATION TECHNOLOGY

Volume IV: Software Requirements for WIS Text Processing Prototypes

Alan Shaw, Task Force Chairman
Murray Berkowitz, IDA Task Force Manager

Bill Brykczynski
Christopher Fräser

Edgar Irons
Marvin Zelkowitz

John Salasin, Program Manager

December 1986

Accession For

NTIS GRA*?
DTIC TAB
Unannounced
J'intificn*ion_..

□

By_
Distribution/

Availability Codes

Avail ana/or

IDA

Dlst

m
Special

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T-W5-206

••,,••, ML, il., ..ir i,.(i

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Purpose 1
1.2 Scope 2
1.3 Terms and Abbreviations 4
14 References .4

2.0 A STRUCTURE EDITOR GENERATOR FOR DOCUMENTS,
PROGRAMS AND OTHER STRUCTURED DATA 6

2.1 Introduction 6
2.2 Background 6
2.3 Applications of the Editor .7
2.4 The Host Environments 7
2.5 The User Interface 8
2.5.1 Views 8
2.5.2 The Interaction Language., 8
2.5.3 Editing Objects Structurally and Textually .9
2.5.4 Editing Object Definitions 10
2.6 Specification of Object Classes 11
2.6.1 Default Actions and Prompting 11
2.6.2 Using Action Routines to Define Views of Unelaborated Objects 13
2.6.3 Action Routines for Viewing and Elaborating Objects 17
2.7 Example Applications 18
2.7.1 Definition of a Military Document 18
2.7.2 Ada Programs 19
2.7.3 Spreadsheet 21

3.0 GENERAL REQlilREMEOTS FOR A TEXT FJDITOR/FORMATTER 24
3.1 Introduction 24
3.2 Word Processing Characteristics 24
3.2.1 The Idiom , 24
3.2.2 Cursor Motion ,.., 24
3.2.3 Scrolling 25
3.2.4 Formatting. 25
3.2.5 Editing , 25
3.2.6 Search and Replace Operations 25
3.2.7 Calculati.^ Capability 25
32.8 Forms 25
3.2.9 Document Interchange Format Capability 26
3.3 WYSrWYG Document Production 26
3.3.1 The Integrated Document 26
3.32 Extended Formatting 27
3.3.3 Dynamite Constitutents 27
3.4 Performance Requirements 28

4.0 WRITER'S WORKBENCH 25
4.1 Introduction 29
4.2 Scope of Requirement 29
4.2.1 Environment 29
4.22 Omissions 30
4.3 Writer's Workbench Tools 30
4.3.1 Text Input 31

TABLE OF CONTENTS (Continued)

4.3.2 Formatter 31
4.3.3 Equation Input 31
4.3.4 Table Input 31
4.3.5 Fonts 31
4.3.6 Graphics 31
4.3.7 Spelling Checker 32
4.3.8 Dictionary ..32
4.3.9 Thesaurus 33
4.3.10 Index 33
4.3.11 Table of Contents 33
4.3.12 Fog Index 33
4.3.13 File Conversion 33
4.3.14 Printing 34
4.3.15 Comparator 34
4.3.16 Encryption 34
4.3.17 Database 34
4.3.18 Command Language 35

1.0 INTRODUCTION

1.1 Purpose

The World Wide Military Command and Control System (WWMCCS) is an arrangement
of personnel, equipment (including automatic data processing (ADP) equipment and
software), communications, facilities, and procedures employed in planning, directing,
coordinating, and controlling the operational activities of U.S. Military forces.

The WWMCCS Information System (WIS) is responsible for the modernization of
WWMCCS ADP system capabilities, including information reporting systems, procedures,
databases and files, terminals and displays, communications (or communications
interfaces), and ADP hardware and software. The WIS environment is a complex one,
consisting of many local area networks connected via long distance networks. The
networks will contain a wide variety or hardware and software and will continue to evolve
over many years.

The main functional requirements for WIS are presented in [JACK 84]. Briefly, the
functional requirements have been categorized into seven areas:

a. Threat identification and assessment functions involve identifying and
describing threats to U.S. interests.

b. Resource allocation capabilities must be provided at the national, theater, and
supporting levels.

c. Aggregate planning capabilities must provide improved capabilities for
developing suitable and feasible courses of action based on aggregated or
summary information.

d. Detailed planning capabilities must provide improved methods for designating
specific units and associated sustainment requirements in operating plans and
for detailing the sustainment requirements in supporting plans.

e. Capabilities must must be provided to determine readiness, for directing
mobilization, deployment and sustainment at the Joint Chiefs of Staff (JCS) and
supported command levels and for promulgating and reporting execution and
operation orders.

f. Monitoring (inabilities must provide information needed to relate political-
military situations to national security objectives.and to the status of
intelligence, operations, logistics, manpower, and C3 situations.

g. Simulation and analysis capabilities must include improved versions of
deterministic models that are comparable to those contained in the WWMCCS.

In order to support these high level objectives, the WIS system software must provide an
efficient, extensible, and reliable base upon which to build this functionality. To develop
such system software, several projects are planned for prototype foundation technologies
for WIS using the Ada programming language. The purpose for developing these
prototypes is to produce software components that:

a. Demonstrate the functionality required by WIS.

,— L*» J» i— <i+ I*II— .* i«i -■» _m ■■ ,— _'■' n _m< ■■' ■»■ i ■ i ■■ i"

b. Use the programming language Ada to provide maximum portability, reliability,
and maintainability consistent with efficient operation.

c. Demonstrate consistency with current and "in-progress" software standards.

Foundation areas in which pre types will be developed include:

a. Command Languages

b. Software Design Description and Analysis Tools

c. Text Processing

d. Database Management Systems

e. Operating Systems

f. Planning and Optimization Tools (Computational and Analytic Segment (CAS)
Smart Advisor for Planning and Execution Decisions (WISS APED))

g. Graphics

h. Network Protocols

1.2 Scope

This document describes general requirements for the WIS Text Processing System
prototype project The objective for this effort is the development of a complete Ada-based
"document management" system with capabilities for, but not limited to, word processing,
providing output with multiple type fonts, and user oriented "help" messages tailored to the
opeiahons being performed and user expertise. In general, critical design issues include
the following:

a. The provision for compatibility with multiple subsystems that may or may not
have been completely defined and or developed

b. Hie abüity to use a variety of input output devices

c. The capability of using textual syntax/semantics to provide assistance in
document preparation

d. The ability to provide user-oriented "help" based on analyses of operations
being perfotmed (e.g., code being executed) and user history/expertise

Two specifications have been generated and support the stated objective of developing
software in Ada to support WIS communications functionality in the 1990s:

a. Specification for a Structure Generator Editor for Documents. Programs and
Other Siuctured Data

b. Specification for a Writer's Workbench

This work is the result of the identification of the functionality requirements and research of
the technology base.

jA MTM »li HViVp^^iifrjir* i'ijii_a ■^■■jii".Jp>_w*ji>,!■■.■ M *w*v *m

The Structure Generator Editor for Documents, Programs and Other Structured Data
specification describes a project to design, develop, and implement a prototype system for
automatically generating general and special-purpose editors across a variety of computers,
input devices, and hard/soft copy output devices.

The Writer's Workbench specifies Ada packages for common tools necessary for a text
processing system to provide a writer with complete document preparation capability. This
includes tools for spelling error detection/correction, style analysis, indexing, bibliography
database, on-line dictionaries, and glossaries.

Efforts were initiated to develop specifications for a text editor/formatter system with the
following capabilities:

a. High speed and efficient editing of large files.

b. File operations such as copying, moving or searching large blocks of text
optimized to perform at nearly the speed achievable by the underlying operating
system.

c. Defining character fonts arbitrarily and of arbitrary size from a pixel to larger
than a screenful.

d. WYSIWYG ("What you see is what you get") formatting, so that the text stays
in format as you type, including proportionally spaced text using characters of
different widths.

e. Providing calculator and spreadsheet functions on data in the text

f. Providing the opportunity to define forms whose fields may be selected from a
list of alternatives, or constrained in arbitrary ways by an interpreted Ada
program.

g. Allowing interpretive execution of Ada programs mixed with editing operations.

Upon further investigation it was determined that such capabilities exist with current
commercially available technology and products such as the Slater Tower (Estes Park,
Colorado) product "SPROUTS". This obviated the need for development of a specification
of such a component: as it could easily be purchased/licensed from the vendor and
converted to Ada. General requirements tor such a text editor are, however, included in
this report.

In this document the basic design, structure and interfaces of the WIS Text Processing
System are provided. Many implementation details are left to the implementor; however, it
is intended that the text processing system will be designed and implemented in Ada.

The following documents form part of this document to the extent specified herein.

U.S. Department of Defense. Reference Manual for the Ada Language:
ANSI/MIL-STD-1S15A, January 1983.

U.S. Department of Defense. Common APSE (Ada Programming Support
Environment) Interface Set (CAIS). Proposed MJL-STD-CAIS edition, KAPSE
Interface Team (KIT), 1985.

U.S. Department of Defense. Joint Staff Officer's Ouide 1984. (AFSC Pub 1).

Proposed Mn.wSTD Document Interchange Format (DIF).

1.3 Terms and Abbreviations

ADP
APSE
CAIS
dag
DIF
GKS
I/0
ISO
JCS
LAN
MS
SQL
TCPIIP
\VIS
\V\VB
\V\V1v!CCS
\VYSIWYG

Automatic Data Processin,~
Ada Programming Support ~nvironment
Common APSE Interface Set
Directed acrylic graph
Document Interchange Format
Graphical Kernel System
Input/Output
International Standards Organization
Joint Chiefs of Staff
Local Area Network
?vlilliseconds
Structured Query Language
Transmission Control Protocol/Internet Protocol
WWMCCS Information System
\Vriter's Workbench
World Wide Military Command and Control System
What You See Is What You Get

1.4 References

[BAHL 85]

[BIGG 841

[FRAS 80]

[FRAS 81a]

[FRAS 82)

[FRAS 81b]

Bahlke, R. and G. Snelting, "The PSGwProgramming-system Generator,"
in Proceedings ACM SIGPLAN 85 Symposium on Language Issues in
Programming Environments, published as SIGPLAN Notices 20, 7 (July
1985): 28-33.

Biggerstaff, T., D. Mack Endres, and I. Forman, ''TABLE: Object­
Oriented Editing of Complex Structures." Proceedings of the 7th
International Conference on Software Engineering (March 1984). IEEE
Computer Society Press, 1984, pp. 334-345.

Fraser, Christopher W., "A Generalized Text Editor," Communications of
the ACA123,3 (March 1980): 154-158.

Fraser, Christopher W., "Syntax-Directed Editing of General Data
Structures," Proceedings of the ACM SIGPI.AN SIGOA Symposium on
Text Manipulation. Published as SIGPLAN Notices 16, 6 (June 1981): 17-
21. The proceedings of the conference containing this paper are also
available as SIGOA Newsletter 2, 1&2, Spring/Summer 1981.

Fraser, Christopher W., "A Programmable Text Editor," Sojm•are-­
Pracrice and Experience, 12,3 (March 1982): 241-250.

Fraser, Christopher W ., and A.A. Lopez. "Editing Data Structures," A CAl
Transactions on Programming l.Angu.ages and System.t 3, 2 (April 1981):
115-125.

4

[FURU 82] Furuta, Richard, Jeffrey Scofield, and Alan Shaw, "Document Formatting
Systems: Survey, Concepts, and Issues," Computing Surveys 14, 3
(September 1982): 417-472.

[JACK 84] Jackson, B. and Salasin, J., Preliminary Requirements for the Army
WWMCCS Information System (AWIS), WP-84W00035, Mitre
Corporation, February 1984.

[KJMU 84] Kimura, Gary D., A Structure Editor and Model for Abstract Document
Objects. Ph.D. thesis, Department of Computer Science, University of
Washington, July 1984. Also issued as Technical Report 84-07-04.

[KJMU 83] Kimura, Gary D., and Alan C. Shaw, The Structure of Abstract Document
Objects. Technical Report 83-09-02, Department of Computer Science,
University of Washington, September 1983. ALo in: Proceedings of the
ACM-SIGOA Conference on Office Information Systems (1-2 June 1984).
ACM, New York, 1984, pp. 161-169.

[MEDI82] Medina-Mora, Raul, Syntax-Directed Editing: Towards Integrated
Programming Environments, Ph.D. thesis, Department of Computer
Science, Camegie-Mellon University, March 1982.

[MEYR 82] Meyrowitz, Norman, and Andries van Dam, "Interactive Editing Systems:
Parts I and II," Computing Surveys 14, 3 (September 1982): 321-415.

[NIEV 82] Nievergelt, J., G. Cora>, G.D. Nicoud, and A.C. Shaw (editors),
Document Preparation Systems, North-Holland, 1982.

[NOTK 84] Notion, David S., Interactive Structure-Oriented Computing, Ph.D. thesis,
Department of Computer Science, Cainegie-Mellon University. February
1984. Also issued as Technical Report CMU-CS-84-103.

[NOTK 85] Notkin, David S., "The GANDALF Project," The Journal of Systems L ^
Software 5,2 (May 1985): 91-105.

[REIS 84] Rciss, Steven P., "PECAN: Program Development Systems '.hat Support
Multiple Views," in Proceedings of the 7th International Conference on
Software Engineering, March 1984. IEEE Computer Society Press, 1984,
pp. 324-333.

[SCOF 85] Scofield, Jeffrey A., Editing as a Paradigm for user Interaction, Ph.D.
thesis, Department of Computer Science, University of Washington,
August 1985.

[SMIT 82] Smith, David Canficld, Charges Irby, Ralph Kimball, and Bill Verplank,
"Designing the Star User Interface," Byte 7,4 (April 1982): 242-282,.

[TErr 81] Tcitelbaum, Tim and Thomas Reps, "The Cornell Program Synthesizer A
Syntax-Directed Programming Environment," Communications of the
ACM 24,9 (September 1981): 563-573. Also published as Cornell CS
Tech Report TR80-421.

t^+mmUtJmOmmlm »■ «J li «| l| Ij ■ i »j ■««-*■«■?■' i i ,i .'i .i^.yl. tli .1 a J ,1 ii .> ,lii .1i

2.0 A STRUCTURE EDITOR GENERATOR FOR DOCUMENTS, PROGRAMS, AND
OTHER STRUCTURED DATA

2.1 Introduction

The puiposc of this project is to produce a prototype for a generator of structure editors.
The generator system should provide the necessary facilities for constructing editors; for
example, the following:

a The preparation of documents, particularly the standard military forms used for
transmitting orders, intelligence, plans, and other communications.

b. The construction of Ada programs.

c. The creation of a variety of other types of structured data, for example,
spreadsheets, electronic mailboxes, and file directories.

The system is to be driven by grammatical descriptions of the object classes together with
associated Ada action routines which govern the output display. The command language
part of the user interface may be fixed in the initial version, but the design should permit a
more flexible syntax-directed version that could easily accommodate different interaction
styles.

This document briefly discusses several recent research and development efforts that
demonstrate the feasibility of such a generalized approach. Section 2.3 specifies the
applications, i.e., the objects that the editor should handle, in more detail. The range of
host hardware and software environments are then presented; in summary, these arc high
quality, high performance workstations, and modem Ada-based graphics and database
packages, respectively. The user interface is described in Section 15, including input
commands for editing data and structure, control commands, and output forms. Section
2.6 outlines the requirements and possibilities for object grammars and action routines.

2.2 Background

Traditionally, editors edit text However, the editing paradigm has also been used
extensively as the way to interact with many other kinds of objects. Program editors edit
abstract syntax trees for computer programs (e.g., (TEIT 81]). Word processing software
edits documents and formajs them in real-time (FURU 82; MEYR 82; NIEV 82]; such
documents may contain different types of textual objects, as well as tables, mathematical
formulae, and other special symbols. Bectrortic mail systems edit electronic mailboxes.
Standard text editors often edit structured data ^needed as linear text; for example,
calendars and accounting files are often represented as text files. Window managers edit
properties of windows, such as their size, position, and priority. Debuggers edit memory
images, and sub-editors within them edit tables of breakpoinrs. Various utilities edit file
system directories, for example, to display directories, renan e files, or remove files. Some
operating system command interpreters permit the re-use ano modification of past
commands by maintaining and editing command scripts. Applications packages often edit
diverse structures; tor example, graphics systems may edit complex linked structures
representing images and spreadsheet managers, such as Viskak, edit financial models.

AU of these systems require a similar core set of facilities, for example, to insert, delete,
move, and copy objects. These editing similarities over such a wide rrnge of objects and
structures have led to the recent development of general syntax-directed (structure) editors.
Thus, there are structure editors for programs (BAHL 85, MEDI 82, REIS 84], structure

editors for documents [KIMU 84, KMJ 83], and more general editors that work with any
object at the user interface [FRAS 80,81a, 82; FRAS 81b; NOTK 85; SCOF 85].
Typically, these editors may prompt for input according to grammars defining the objects
of interest, may parse some input when complete syntactical prompting is not practical or
desired, and display structures in realtime through a formatting (or "unparsing") process.
This project is concerned with the automated construction of such editors.

2.3 Applications of the Editor

Initially, the editor system must be able to handle standard military documents used for the
formal communications of orders and plans, military electronic mail, spreadsheets, and Ada
programs. Emphasis should be on the editing and viewing of electronic data, with the
option of producing reasonable quality hardcopy versions. High-quality typography is not
a first-or^er concern.

Formats for military standard documents are defined in Appendix I of AFSC PUB 1
(Forms 1 through 8). For electronic mail, the principal need is to edit and view messages
prepared according to the military joint message form (DD Form 173).

As a structure editor for the preparation of Ada programs, the editor system must provide
for the syntax-directed preparation of Ada compilation units and subunits. These include
packages, generics, subprograms, and tasks.

Fairly simple spreadsheets, say at the complexity level of Multiplan, should also be
constructable. Finally, it should not be difficult to extend or modify the system so that the
other objects and applications mentioned in the last section can be processed also.

2.4 The Host Environments

It is assumed that the generator and resulting editors will run under modern hardware and
software host environments, and that their features will not be compromised by past and
obsolete technologies. In particular, in the hardware area, it will be written for advanced
input and output systems, powerful personal workstations, and high bandwidtn local area
networks (LAN's). Input includes an efficient positioning and selection device such as ,a
mouse. Screen output should be a high precision raster display, refreshable in realtime
from a user workstation. A laser printer, or equivalent, is assumed for hardcopy output
Printer, filing, database, and mailing services are provided across the LAN.

In addition to an Ada compiler and run-time system, the software environme.it has various
front- and back-end facilities that the editor may use. The editor should assume the
availability of a standard graphics package, such as Graphical Kernel System (GKS), and
should use device-independent logical or virtual 10 for accessing and manipulating text,
line, and general raster images. Similarly, there is a window package that permits the
definition and management of virtual screens; this permits several simultaneous and
differing views of objects being edited, as well as convenient space for dialogs, menus,
and other interface elements. Eventually, a window manager may be yet another
application of the editor generator.

A back-end need and assumption for the editor is a filing and/or database system that
allows the storage and retrieval of object and object classes. For example, the description
(grammar and action routines) for the military document class "Planning Directive" would
be stored and accessible through this system. There is also a mail system that presents
higher-level send and receive operations, that the user can access through the editor. (The
mail system itself is not part of this project.) The management, enforcement, and

^■■^W^W^w^—^ ■_* n.« «.i ■ » ii.« iä' M ■_■ n* ■.' m.**^ ■* <L %' v* L1 «' ■»■ n' tf WL' tf if «■ WO M

maintenance of security classifications would be implemented through these host systems
(mail, filing, database,...), but the editor must be cognizant that certain operations may be
disallowed because of security violations.

As a general rule, standard interfaces and tools are to be adopted and assumed. In
particular, the CAIS standard is to be employed for Ada programs, filing tasks, and
operating system functions. SQL is the adopted standard language for database access.
TCP/IP and ISO are the networking standards. As implied above, graphics is done
through GKS.

2.5 The User Interface

2.5.1 Views «

The editor displays and allows editing of at least three different views of the structure that is
being edited: the "what you see is what you get" (WYSIWYG) view, a linear textual view,
and a structural view.

The WYSIWYG view displays objects in a fashion that mimics their formatted or pretty-
printed hardcopy images as much as possible. This view is the default and normal
interface. A prominent example of a WYSIWYG interface is the Xerox Star workstation
[SMTT 82] or the Apple Macintosh.

The structural view displays the object's decomposition using graphics or text, whichever
best suits the object at hand. Graphic images might use boxes and arrows to display
structure. Textual images might use indentation or parenthesization to display structure.
The default WYSIWG view suggested in Section 2.6.1 uses indentation and thus presents
structure at the same time.

The linear textual view represents the data file for the object This view might be a prefix
encoding of the structure, although if the WYSIWYG view includes enough keywords to
permit reconstruction of the object, then a full prefix encoding may not be required.

2.5.2 The Interaction Language

The user commands fall into three classes. Viewing commands provide the means for
traveling through and reading a document, program, message or other component The
second class, the data and structure editing operations, create and modify objects and their
structures. The third class is a miscellaneous category and contains various important
initialization, filing, and control functions.

For viewing, the editor should implement user instructions for scrolling through objects in
a linear fashion and for traversing and displaying elements in a structured manner. In the
latter case, there should be commands for viewing the parent(s), children, and siblings tor
a given object It should be possible to define a viewing area implicitly as the result of
executing a search command that searches for a particular object in the structure. The
window manager should also make available a number of user commands related to
viewing; typically, these permit interactive manipulation of window sizes, position, and
priority (for overlapped windows).

In addition to conventional text editing commands, there should also be structure-editing
operations to perform such functions as insert delete, create, move, copy, share (attach an
object to more than one parent in the structure, thus producing a directed acrylic graph

<m 't'»'i U -i '■ »i 'T »i »i

(dag), and change (rename or reclassify) an object of a given class. The next subsection
elaborates on the structure-editing commands.

The editor should provide a minimal undo feature that backtracks one command by
essentially executing the inverse of the last command entered. Ideally, the undo should
extend backwards more than one step right to the beginning of a session, though the user
interface must take care that the user understands exactly how much editing is being
undone.

Miscellaneous commands include those commands to store objects in a resident database or
file, to produce hardcopy versions, and to specify the type of view. Another command
important for user convenience is a help operation that displays system documentation.

Regardless of command type, objects are selected (e.g., for editing) by naming them or by
indicating their geometric extent on the display screen. The latter indication can be done
explicitly by pointing or implicitly by directing the editor to move up or down in the
structure surrounding a specified screen cursor position.

The editor should allow the user to enter any command by typing text, striking a function
key, or selecting from a menu. A fixed command set for each of these three styles should
be defined for the structure-independent commands (e.g., undo, delete, write). These
fixed sets should be augmented with the appropriate structure-dependent commands (e.g.,
node creation), which are automatically inferred from the structure description (see the
next). This feature should be provided by driving the command interpreter from a
grammar, so that different styles of command entry may be used dynamically. In the long
run, services, such as command completion and help, can be generated automatically from
these grammars.

The command language should have a common form for all views and all objects, and it
should follow the WIS standard for command language where it applies. The command
interpreter should be isolated to simplify future modifications.

2.5.3 Editing Objects Structurally and Textually

The user interface is syntax directed; that is, object class grammars drive and prompt user
editing. The structure specification should have associated concrete templates that are
presented to the user to guide editing. However, because different users prefer different
styles, and may want structure editing for only the larger objects, if at all, it should also be
possible to selectively interact non-structurally via linear text The editor distinguishes
structural and textual commands by using distinct but consistent command sets for each.

For example, suppose the program grammar contained the following rule (Ada "if
statement):

ffstutement ::>

Mf condition 'then' statements

('elseIf condition 'then' statements }

('else' statements] 'endir

The user may enter such statements structurally, perhaps using a ".if command that
displays a template for a general ifstatement and implicitly directs the user to fill in each of
the required and desired components. The u:,er may also enter such statements by typing a

conventional text string; this string must, however, be parsed according to the rule to
produce the appropriate internal structure, check for "syntax" errors, and allow formatted
display.

The set of structure-editing commands like ".if* is automatically generated from the object
grammar. This automatic inference might be implemented by concatenating the non-
terminal symbol naming the rule with some prefix like"." to distinguish structure-editing
commands from the text-editing commands.

This procedure would yield ".if statement" for the rule above. Such commands could then
be shortened by deleting any trailing characters that are not needed to distinguish this
command from the other structure-editing commands. This procedure might yield a simple
".if" or even ".i" for the rule above.

Mixed structure and text editing is implemented by parsing and "unparsing" as necessary.
When the user enters a text-editing command, the editor identifies the smallest substructure
that covers the point of interest, unparses it by calling its action routine (See Section VI)
and allows it to be edited as text The resulting text is reparsed and reattached to the main
structure as soon as the user enters a command that does not apply to the text (such as a
command for editing structure or traveling to another part of the object).

The ability to mix structure and text editing implies that the text must contain enough
information to recover structure; i.e.it must be parable. All parsing shall be driven by the
grammar, perhaps using a simple recursive-descent or LL(1) parser. Programs are easily
parsed, but pure textual documents and mail objects will require user-specified tags to
identify structural elements; examples of such tags may be TROFF -ms macro commands
or Scribe environments [NIEV 82].

2.5.4 Editing Object Definitions

New object classes should be specified via the editor and their definitions stored in a
library. Commands for retrieving and editing object instances and class definitions are also
clearly necessary. The grammars defining classes may be created and edited by supplying
the editor with a grammar for grammars, such as the one below:

grammar ::■ { rule action }

rule ::■ •Identifier "::«" expr

expr ::■ tern { "|" term }

term ::* factor { factor }

factor ::> ["•" | "%"] •Identifier | literal

| "(" expr ")" | "[" expr "]" | "{" expr ">"

literal ::» """■ { »character } """"

The asterisk (*) preceding an identifier is used to indicate a user-entered terminal or token,
while the percentage sign (%) denotes a system-generated terminal. The actions associated
with each rule are written in Ada, so they should be entered with the Ada grammar driving
the editor that offers program editing. See Section VI for more detail on the actions.

10

K-' A-\-'. \ ••.-•> ■V\^^-V\ ■■ • v v- ■ ■ ••-■--■ - »-•»-• ■-■- a. •- ^ ^— . . -. s-^...^-^-^.

The facility to change structure specifications shall allow the editor to impose different
structures on the same data and thus incidentally unify some previously distinct editing
styles. For example, the grammar

file ::= { printable j separator }

panes a file as a string of printable characters and line separators, which are treated
symmetrically. It thus treats the entire file as a single string. In contrast, the grammar

file ::= { line }

line ::= { printable} separator

parses a file into a list of lines, where each line is a string of printables followed by a
separator. It thus specifies a line editor. Thus the editor should be able to offer both
editing styles.

2.6 Specification of Object Classes

An object class is defined by a set of rules (a grammar) with associated action routines.
The rules give the syntactical or structural possibilities for members of the class, while the
action routines generate the displayed version of the objects.

The syntax rules are written in a context free grammar form, similar to the notation used to
express Ada syntax rules. Section 2.5.3 presented an example of an ifstatement rule
using this format and Section 2.5.4 gave a complete description of the possible forms for
grammar rules (in the grammar for grammars). Further examples are given in Sections
2.6.1, 2.6.2, and 2.6.3.

The action routines play a role analogous to semantic action routines in compiler
technology. The primary function of these routines, which are to be written in Ada, is to
produce WYSIWYG display screen output; it should also be possible to direct the output to
a hard copy device. Thus the user is normally interacting with objects whose screen
images are the result of executing action routines. The action routines can also be used for
other purposes such as defining templates and maintaining tabular constraints in
spreadsheets. Default actions are automatically provided when action rules are not
specified.

The next three subsections describe how grammars with rules and actions may be written to
define structure editors for the object classes of interest. First, a useful set of default
"actions" and templates are outlined We then show how explicit action routines can be
used to compute templates and WYSIWG views, overriding the defaults. Examples in
military documents, Ada programs, and spreadsheets illustrate the ideas.

2.6.1 Default Actions and Prompting

If action rules are not given explicitly with the syntax rules, the system will provide
defaults for

(a) Prompting the user with templates in a goal-directed manner

(b) Viewing the partially specified document

11

Each unelaborated or unspecified syntactic unit is represented by default to the user by
pretty-printing its character string description in the corresponding grammar rule; this
template is treated as an atomic selectable unit For example, alternative units
(xl | x2 |... | xn) could be displayed on the same line, when possible, while sequenced
units (xl x2 ... xn)j could be displayed on successive lines. An unelaborated unit must
be distinguished from an elaborated one, say, by using reverse video.

Example:

Suppose a grammar contains the rule (production):

doiumenteleroea: ::= testblock {textblock | list} | table

and the documentelement unit has been selected. The screen could then display the
string:

"textbiock {text_block | list} | table"

with two selectable units, denoted by "text_block {text_block | list}" and "table",
respectively. If the first of the two is selected, the "table" alternative could be erased from
the screen and the user presented with a sequence of two selectable units: "text block"
followed by "{text block | list}" on the next output line.

When units are partially or fully specified, a reasonable default is to display the character
string defining each unit in a linear fashion, with a separate line for each element arid an
indentation tab for each level down the syntax tree. Unspecified portions are interleaved
with the elaborated units and shown on separate lines according to the conventions above.
For repeated items generated from the form {x}, the following default display could be
employed:

If xl x2 ... xn has been generated from {x} and each xi is an x unit, then the screen will
have the appearance:

{x}
xl
{x}
x2
{x}

{x}
xn
{x}

with the {x} tagged as unspecified, say by reverse video.

Example.

Using the first alternative of the documentelement rule defined above, the following
elaborated units consisting of a text block followed by a lis: of three elements, followed by
a text block are possible:

12

<*-W-V-%''.-vw v>•.•-.• y^y^'.-^-^--. '_.-.>-_. -..-^ ■-> •.•*-..■..». ■■■.'. -..».■>.'■>-.-.-. .-.-«:•...

This document has three parts:

1. header

2. body

3. references

Other organizations are possible.

The default display would be:

This document has three parts:

{text_block | list}

1. header

2. body

3. references

{text_block | list}

Other organizations are possible.

{text_block | list}

There should be an option for the user to turn off the display of elements that are
unspeciried but not required. These are the units given by the forms {x} and [x]. This
option permits the final WYSIWYG view. The first part of the last example shows the
view with the "{textblock | list}" tumed-off.

2.6.2 Using Action Routines to Define Views of Unelaborated Objects

Action routines, written in Ada, can be used to override the defaults. For an unelaborated
rule identified by the non-terminal symbol e, the display of the selectable units on the right-
hand side of the rule (i.e., the template for the possible components of e) can be defined by
such a routine.

The routine will be an Ada procedure of the form:

procedure DISPLAY JJNELABORATEDJJNIT(UMT :ln UMT_REFERENCE);

where UNIT is of enunmeration type UNIT_REFERENCE, and may be, for example,
IFSTATEMENT, or DOCUMENT_ELEMENT

where DU stands for "Display Unspecified or Unelaborated unit" and e identifies the
syntactic unit. Examples are DU_document_element and DUifstatement.

A current position for a "pen" on the display surface is available to DU and other action
routines. This position, denoted by LOCATION, is updated by the primitive and default
display routines, and can be manipulated in order to translate geometric data such as

13

--—-■ ■ ii* ».»r*

should be available, where rectangle gives the coordinates of a rectangular box surrounding
the unit unit that is to be made selectable. For example, make_selectable(A(3)(l), BOX3)
would attach the unit G (A(3)(l) in the above example) to the displayed box BOX3.

Examples:

1. Given again the rule for documentelement defined above in Section 2.6.1,
suppose that the template for the "table" alternative appears below that for
"text block {text block | list}" and that the template for the "list" unit is to be
shown indented one tab stop further than a text block. An action routine to
accomplish this could consist of the DU procedure:

DISPLAY_UNELABORATED_UMT(DOCUMENT_ELEMENT);

- Display templates for each unit.

DISPLAY DEFAULT UNELABORATED UNIT
(DOCUMENT_ELEMENY (1)(1), LOCATION); -- first test_block.

DISPLAY DEFAULT UNELAE0RATED_UNIT(DOCUMENT ELEMENT(1)(2)<1).
LOCATION); --" second text_block.

LOCATION.X := LOCATION.X ♦ TAB; -- tab contains Indent value.

DISPLAY DEFAULT UNELABORATED UNTT(DOCUMENT ELEMENT(1)(2)(2),
LOCATION); •- indented list template

LOCATION.X := LOCATION.X - TAB; - return to old margin.

DISPLAY DEFAULT UNELABORATED UNIT(DOCUMENT ELEMENTS),
LOCATION);
-- table

2. Let a right-hand side of a non-terminal x be three units in sequence x 1 x2 x3.
Suppose that the unelaborated view is to be xl and x2 in adjacent columns with x3
centered below. A DU action routine program to produce this format is

DISPLAY_UNELABORATED_UMT(X)

PREVIOUS_Y_VALLE := LOCATION.Y; -- save previous y value.

DISPLAY_DEFAULT_UNELAB0RATED_UMT(X(l),L0CATION); -- display xl.

LOCATION.Y :* PREVIOUS_Y_VALUE; -- stay on same line as si.

LOCATION.X := LOCATION.X ♦ COLUMNS; -- move to nest column for »2;

DISPLAY_DEFALLT_UNELABORATED_LNIT(X(2),LOCATION); •- display X2:

LOCATION.X :* (LOCATION.X_COLlMNX2);

DISPLAY_DEFAULT_UNELABORATED_LNIT(X(3),LOCATION); -- display x3.

3. A grammar rule that is intended to prompt a user to set the time may be of the form:

time ::■ hour mtautes

15

Kf

If it is desired to set the time in analog fashion, then the time template could be an
analog clock-face with hour and minute hands defined by the action routine
program:

DISPLAY_UNELABORATED_UNIT(TIME);

FACE(CENTER, RADIUS); - routine to draw a clock face.

HEAD.X := CENTER.X;

HEAD.Y := CENTER.Y + RADIUS - DELTA;

— Draw an hours arrow pointing at 12 o'clock.

ARROW(CENTER, HEAD); -- draw arrow.

HEAD.X := X + RADIUS - DELTA/2;

HEAD.Y := CENTER.Y;

— Draw a minutes arrow at 15 minute mark.

ARROW(CENTER, HEAD);

— Define rectl and rect2 as rectangles surrounding the

•• hour and minutes arrows, respectively (not shown).

— Now make these rectangles selectable so that a user

-- can subsequently define the time by selecting and

— moving the hands of the clock.

MAKE_SELECTABLE(TIME(1), RECT1);

MAKE_SELECTABLE(TIME(2), RECT2);

4. The first rule of a grammar for spread sheets may be:

spread sheet :: = [header] {row | column) |

Assume that the initial "template" presented to the user is a grid defining possible
entries and that the {row | column} templates are two cursors, one pointing at a
potential column and the other pointing at a potential row. A row (column) cursor
will be some icon, for example an outline of a pointing "finger", at the left of
(above) the potential row (column). Initially, this will be row 1 and column 1.
Then, the action routine program for DU might be:

DISPLAY UNELABORATED_UMT(SPREAD_SHEET);

-• Assume grid is initialized (not shown);

DDU(SPREAD_SHEET(1), LOCATION); -- template for optional header.

OLDX := LOCATION.X;

OLDY := LOCATION.Y;

LOCATION.X := 0; -- row cursor is to the left of grid.

lb

J 3 _» J

ROWCURSOR(LOCATION); - draw cursor for row.

— Assume rectt_row is a box surrounding the row cursor.

MAKE_SELECTABLE(SPREAD_SHEET(2)<1), RECT_ROW)i

LOCATION.Y :» OLDY;

LOCATION.X :=OLDX;

COLUMN_CURSOR(LOCATION); -- draw cursor above column.

•• Assume rectcol surrounds column cursor.

MAKE_SELECTABLE(SPREAD_SHEET(2)(2), RECT_COL);

2.6.3 Action Routines for Viewing and Elaborating Objects

This section is concerned primarily with the application of action routines for viewing
elaborated objects. A second purpose is their use in maintaining constraints.

Using a convention similar to mat employed for an unelaborated unit, we will reference the
elaborated units of a grammar production with a structured array notation: $e(i) denotes the
ith first level elaborated unit of the rule named e (having left-hand side e), $e(i)(j)
references elaborated element j within element i of e, and so on. This will be particularly
useful for accessing elements of a repeated unit; for example, the elements of b in the
elaborated rule x ::= a {b} would be referenced by $x(2)(i), i = i to size($x(2)), where
size(c) returns the number of units in the list e.

A procedure DISPl-AY(t, LOCATION) is assumed that displays a terminal token t, such
as a userdefined terminal, starting at location LOCATION on the screen; LOCATION
is updated to point to the beginning of the next "line".

For displaying elaborated objects, the programmer must write a routine execute(e)
corresponding to eiich production e. Otherwise, a default execute procedure is used. The
default just calls execute repetitively for each component in turn. For example, the default
execute for the rule A ::= B C | D E {F} is:

cue unll(Ail)) Is when BC » >

wben BCi>

EXECLTE(A[1)(D); •• execute for B.

EXECLTE(AH)(2)); •• citcutc for C.

whea DE > >

EX£CUTE(A(l)(l»; •• execute for D.

EXECLTE(A(!)(2)); •• execute for E.

S :■ SIZE(A(t)(3)); ~ ■ a • of Fa.

for I la 1 .. M loop

EXECITE(A(1)(3)(D); -- execute ith F.

cad loop;

17

i «i m. «i ■

end case;

The last major procedure, called instantiate, is used to initialize and update data structures
and views when a particular syntactic unit is instantiated, i.e. selected for elaboration by a
user. The execute routine described above assumes that all units have previously been
instantiated. A »uitable default is also defined.

2.7 Example Applications

Examples from the three principal application areas are used to illustrate the desired
techniques. First, a military message document is specified. Next, we give a small
example showing part of a possible system for preparing Ada programs. The last section
develops some ideas for a spreadsheet description.

2.7.1 Definition of a Military Document

A simple form of military document might contain the elements and structure given by the
following (incomplete) grammar of eight rules:

1. mildoc ::= securityclassification issuer datetime subject body

2. security_classification ::= 'Security Gassification = '('Unclassified' | 'Confidential' |
'Secret'T'Top Secret')

3. issuer ::= issuing_hq placeofissue

4. datetime ::= zone hour day month year

5. subject ::= *string

6. body ::= paragraph {paragraph}

7. paragraph ::= *string {*string | elist}

8. elist ::= %number *string {%number *string}

Each paragraph in the body consists of a text string entered by the user (*string) followed
by a sequence of text strings and/or elists. An elist, for "enumerated list", is & sequence of
numbered items, each of which is a system-generated number (%number) followed by a
user-defined text string.

Action rules for computing the values and views from elaborated units in Rule 8 could be
the following segment:

ELIST(l) :■ "1. "; - first «number In rule 8.

DISPLAYtELIST(l), LOCATION); -- display " 1. "

LOCATION.X :» LOCATION.X ♦ 3; -- move to the right past "1."

LOCATION.Y := LOCATION.Y • LINE_SPACE; -- move back to same line.

DISPLAY(ELIST(2), LOCATION); -- display nrst »string.

N :* SIZE(ELIST(3)); - n = or Items In {}.

18

■a J _JI A ■ _» J ■ v ■ ■

for I in 2 .. N LOOP

•• generate next number.

ELIST(3)(I)(1) := MAKESTRING(I) & "."; - generate next number

DISPLAY(ELIST(3)(i)(l), LOCATION);

LOCATION.X := LOCATION.X + 3;

LOCATION.Y := LOCATION.Y -• LINE_SPACE:

DISPLAY(ELIST (3)(I)(2), LOCATION): -- display Ith string,

end loop;

The view of the mil_doc grammar above could have been produced by this program, since
the grammar rules are in the form of an enumerated list The above routine also works
correctly if the user_defined terminals, denoted by *string, can be designated as shartd. A
particularly simple example of sharing might occur when entering the mil_doc grammar,
where it may be convenient tc share the five instances of "*string" and two instances of
:,%number".

Action rules could also be written to display other units in locations different than their
default ones. For example, one could write an action routine to center the subject unit
(Rule 5). Similarly, a program analogous to that in Example 2 of Section 2.6.2 might be
employed to display the issuer and date_time units in adjacent columns rather than
vertically; the action routines below for "executing" Rule 1 include this format:

EXECUTE(MILDOCd)); -- security classification

OLDY := LOCATION.Y; ■- save y for datejlzne.

EXECUTE(MIL_DOC<2)); .. Issuer

LOCATION.Y := OLDY; -- restore y value.

LOCATION.X := LOCATION.X ♦ COLLMNX; ■- move right to adjacent column.

EXECLTE(MIL_DOC(3)); -- datetime

LOCATION.X :» LOCATION.X - COLLMNX; -- move back.

EXECLTE<MIL_DOC<4»;

EXECLTE(MIL_DOC(5));

2.7.2 Ada Programs

The default WYSIWG view may not be the standard pretty-printed display expected for a
computer program. For example, the expected default view for English text is not the same
as that for programs.

Consider an Ada loop statement, given by the rule:

loop_statement ::= ['while' condition j 'for' for spec)
'loop' statements 'end loop;'

19

■ * W *

An example of a fully elaborated loop statement containing a while iteration scheme is:

while COST < LIMIT loop

COST := COST + PRICE(N);

N := N + 1;

end loop; •- (1)

Using the default suggested in Section 2.6.1, the above statement would appear:

while

COST < LIMIT

loop

COST := COST + PRICE(N);

N := N + 1;

end loop; - (2)

To obtain the more standard pretty-printed view which was shown first (labeled by (1)),
the following execute action routine could be provided for the loop_statement:

OLDX := LOCATION.X; •• save current Indentation.

case UNIT(LOOP_STATEMENT(l)) is

when WHILE_SCHEME »

DISPLAYCWHILE", LOCATION);

EXECUTE(LOOPJTATEMENT(I)(2));

when FOR_SCHEME =>

DISPLAY(Tor\ LOCATION);

EXECUTE(LOOP_STATEMENT<i)(2));

when others => NULL; -- just a plain loop,

end case;

DISPLAYCLOOP", LOCATION);

LOCATION.X := OLDX ♦ INDENT; -- Indent for statements.

EXECUTE(LOOP_STATEMENT(3)); - show the statements.

LOCATION.X := OLDX; -- move rk to old Indentation.

DISPLAYCEND LOOP", LOCATION);

LOCATION.X := OLDX;

LOCATION.Y :s LOCATION.Y ♦ NEW LINK;

- updated LOCATION for next statement

20

Fa ■ *L i ' ■. it 1 1 k ». "™" ■ - ll1"™ .'..»»

2.7.3 Spreadsheet

Consider a simple spread sheet with a title and an "arbitrary" number of rows and columns
- arbitrary up to the size of the display surface. Each entry can hold either a user-defined
token, such as a number of a text string, or the result of executing a user-defined formula
that may refer to the values of other entries. To make things concrete, assume that the
formula is given by an Ada program segment that can access an array containing the table
entries:

SS: array(l..nr, i..nc) of entry;

where nr is the number of rows currently elaborated and nc gives the number of columns.

The following grammar specifies this class of spread sheets. It is assumed that a given
entry is shared by both a row and a column; i.e., entry SS(iJ) is shared by row i and
column j.

1. spreadsheet ::= [tide] {row | column}

2. row ::= entry {entry}

3. column ::= entry {entry}

4. entry ::= *string | *number | *formula

5. tide ::= *string

More elaborate rules could be given. For example, the rows and columns could be
numbered explicitly by including a system-generated %number with each row and column.
Because the entries defined in Rules 2 and 3 are shared, the syntactical structure of a fully
elaborated table will be a directed acyclic graph (dag) with spreadsheet at the root, row
and column designators (and possible title) at level 1, and shared entries (producing the
dag) at the next level. A shared entry will also be connected to its associated SS element.

The execute action routine to produce a WYSIWYG view corresponding to the first
grammar rule is:

R :« • ;

EXECUTE(SPREAD_SHEET(I)); -- assumed a no-op for undeflnea title.

N :» SIZE(SPREAD_SHEET(2)); •■ i > lot rowi and columns.

for I In S .. N loop

If EQUAUSPREAD_SHEET(2)<n, SPREAD_SHEET<2)(1)) tb«n

- ...2(1) Is a row

R :■ R ♦ 1;

(EXECLTE(SPREAD_SHEET<2)(I)); -- eiecutt ihe row rule

end if;

end loop;

21

. ■vv-/^-.y .-••-.••■.•'.-••■••• .-■•••. -. -■•v:^:.

Ulis just displays the title, if present, and then the table in row order starting from the first
or top row.

Associated with Rule 2 may be the following actions which draw a particular row r. This
is the action program invoked by execute ($spread_sheet(2)(i)) in the above program for
Rulel.

N :« SIZE(ROW(2));

- Draw a horizontal grid line (code not shown) to

- accommodate n + 1 entries.

•- Draw vertical line demarklng first box (not shown).

C : . 1;

EXECUTE(ROWU)); ■• show first entry.

•• Draw vertical line ending first box (not shown).

for I in 1 .. N loop

C :- C + 1;

EXECUTE(ROW(2)(i)); •- show next entry.

•• Draw closing vertical line (code not shown),

end loop;

For the complete view, an execute routine is not necessary for Rule 3 since we are moving
through the structure on a row by row basis. However, when a new row is instantiated,
action routines are necessary, as described below. Rule 4 has the corresponding execute
actions:

if EQUAL(ENTRYd), ENTRY(3)) then •- it's a formula.

SS(R.C) := EVALAUTE(ENTRYd));

eb.

SS(R,C) :» ENTRY(l);

end If;

DISPLAY(SS(R,C), LOCATION);

Here, the evaluate function is an interpreter that evaluates the formula specified in the entry
at row r and column c. r and c are passed down from the row program above.

For this class of spreadsheets, we want to include the ability to insert a new row or new
column anywhere in the currently defined table, i.e. between any two rows or columns.
Adopt the convention that a selection of an unelaborated row (column, respectively) at row
i (column i), where i <= nr+! (i <= nc+1), will cause a new row i (column i) to be
instantiated and old rows i through nr (columns i through nc) to be shifted one row down
(one column right) to i+1 through nr+1 (i+1 through nc+1). This facility can be provided
by an 'instantiate' action routine for row (column) in Rule 2 (Rule 3).

22

m& akkasflifiaaag^^

Consider the column case (Rule 3). After determining the selected column, say i, each old
column from i through nc is shifted right by reassigning its entries to the next column and
adjusting the SS array. (A column's entries are obtained by referencing column(j), j = 1 to
nr.) The shared row entries (row(j), j«i to nc for each row) are also adjusted right since a
row entry previously shared by the kth column is now shared by the (k + l)st column
when k >= i. Finally, the new column is initialized with unelaborated entries; these entries
are also attached to their corresponding rows so that they are shared correctly.

23

fca&aj&&aaa&£&a^^

3.0 GENERAL REQUIREMENTS FOR A TEXT EDnOR/FORMATTER

3.1 Introduction

The state of the art in text processing should be able to produce an integrated document
containing text, pictures, tables, formulae, and calculations in the "What-you-see-is-what-
you-get" (WYSIWYG) style. The purpose of this section is to define the following
characteristics and objectives of a modem text editor/formatter, including:

a. Word processing characteristics

b. WYSIWYG document production

c. Performance considerations

d. Other characteristics, such as universality, compatibility, etc.

3.2 Word Processing Characteristics

The objective for word processing is to provide typing and editing capability which meets
the expectations of common commercial systems. The package provides for formatting
information, for example about placement of tabs and margins, in the text so that several
formats may be used in and recorded with the document Display modes are provided in
such a way that formatting information may be seen and edited with text editing commands,
or hidden so that the document displayed on the screen looks exactly as it would look when
printed. The package is operated with function keys. Menus are provided in some
situations to assist in operating the program, though most operations, especially frequently
used ones are available without using menus.

3.2.1 The Idiom

It is nearly impossible to draw a picture of a face with function keys, and it is awkward to
move a few words of text by mousing to highlight them, then using a menu to cut and past.
Most consultants in office products believe a combination of function keys and pointing
devices is useful in the integrated system Simple manipulation of text without pictures is
probably better done with function keys.

Above all else, one must keep uppermost in the mind that while it is useful to do a
calculation every now and then, and while one does want to include pictures in documents,
most of the work done at a computer terminal is typing and simple editing. A text
processing system must never, never, compromise the case and speed with which these
basic operations are accomplished.

3.2.2 Cursor Motion

The cursor may be moved arbitrarily in the text, and anything typed will be placed in the
text at the cursor location unless prohibited by write protection of the data or field
definitions in a form. When the cursor reaches the extreme of the screen, the text will
scroll up, down, left, or right to allow the cursor to move to material located off the screen.
When typing, the text will scroll right, left, or down appropriately so the characters being
typed are placed in the correct position in the document.

24

^ ^

3.2.3 Scrolling

The input device, whether it be a mouse, or function keys, will provide capability to scroll
the text up, down, left, or right by full or partial screens. It will also provide the ability to
see a specified line or page of the text

3.2.4 Formatting

Format lines may be inserted into the text specifying tabs and margins for the following
text, including standard and decimal tab stops, and the ability to have the text lines flush
left, right, centered, or justified both left and right Text is formatted as it is typed, so at
least the material on the screen is correctly formatted at all times. Margins may be set so
that the material may be wider than the screen. Proportional spacing is shown directly on
the screen including the use of fonts in which the characters may be of different widths.
Text wraps by words from one line to the next as material is typed, inserted or deleted,
rage breaks may be inserted or deleted or recalculated with a function key. Pa^ breaks
may be manually inserted at a specified spot and regions of text may be marked so that a
page break will not occur in the region.

3.2.5 Editing

Material may be deleted, copied or moved with cut and pasting operations. Such
operations are, in general, initiated by highlighting a region of text to be deleted, moved, or
copied, then using a function key to effect the operation. Regions highlighted may be any
rectangular region on the text including full lines. The entire document may be so
highlighted to move, copy or delete the whole text Data is moved from one place to
another by first cutting or copying it These operations place the data on a "clipboard"
capable of holding a number of such items. They may subsequently be placed in the same
document or into another with a paste operation. Operations to delete characters, or
backspace over a character are provided. Typing may be either inscrtive or overstriking.

3.2.6 Search and Replace Operations

The ability to search for a specified phrase, and to replace phrases found by searching with
another phrase are provided The search may match patterns exactly or with "wild card
characters" to match simple patterns in the text

3.2.7 Calculating Capability

A capability will be provided to call for the evaluation of formulas like those used in
operating a calculator. Such formulas may appear free form in the text

3.2.8 Forms

Forms may be defined identifying data fields into which data may be typed or calculated in
a controlled way. Forms in common use, such as Federal tax forms can be specified.
Some field values may be calculated from data in other fields, and the data entered into
fields may be constrained arbitrarily by a program. The field definitions may be shown so
the form itself may be changed by editing it or may be hidden when the form is in use.
Forms may be arbitrarily long, may be wider or longer than the screen.

25

n nil _mn i ii i i ■ ii.i ji ■ ■ j pi »' » m

3.2.9 Document Interchange Format Capability

An important aspect of a text formatter will be the ability to conform to the proposed MIL-
STD Document Interchange Format (DBF). DDF will allow documents to be transmitted
among different word processing computer systems, retaining the original indents
columns, paragraphs etc. All ASCII characters will be transferred. However, word
wraparound and embedded blank lines may not transfer identically.

Conformance to the DDF will allow rapid transfer of documents from one word process
to another. This will save the time and work of relaying these documents.

3.3 WYSIWYG Document Production

The working document should be an image of the final document Many kinds of dynamic
formatting, such as keeping paragraphs in a specified format even as they are being edited
are becoming typical in modern products. More sophisticated kinds of formatting such as
page break placement, sophisticated footnote placement, etc. are more typically done in a
post process. It is acceptable to delay some computationally intensive operations until a
command is issued to bring the document back into format, but the principle should be that
the working document is as close an approximation to the final document as possible at all
times.

3.3.1 The Integrated Document

The most innovative systems today are including all aspects of common office computing,
word processing, graphics, calculating in spreadsheets, access to databases in one
integrated processing product The ideal is to be able to include objects of a variety of
types in a "compound document" which not only displays the image to be finally printed,
but carries along in an appropriate way the data used in creating the image.

The compound document is fundamentally a text in the direct image of what is to be printed
finally, but includes pictures which might have been drawn on the computer or scanned by
a digitizer, tables of numbers produced from underlying formulae in a spreadsheet style,
and graphs generated from such tables. The ideal is that all of these constituents remain
"live" so that one can alter the numbers in a table and as a consequence of that action have
other numbers in the document or graphs derived from them change as a consequence of
the editing operations.

The requirements for the text processing system are the capability:

a. To manipulate pictures and graphics objects in a fashion tightly integrated with
text.

b. To provide a way to store arbitrarily complex objects, like the formulae which
generated a table, in conjunction with the text for the table.

c. To activate processing system like spreadsheets which are associated with the
data.

A good test of the compound document is to be able to mail it through an electronic mail
system, and have the recipient be able to revise figures in a spreadsheet component of the
document and activate the spreadsheet calculator to carry out consequent changes in the
document.

26

t^&mtmft *, ■■_! *****wwt »j'»_ m. i ■'»-■■>» i i >i.'» 'i" 'r *i

3.3.2 Extended Formatting

The package provided formatting features found in common batch formatting packages
used for preparing typeset material. We use the UNIX Troff package as a model for which
features are included, but not for how they are included. The package provides all these
features in a WYSIWYG fashion so that the document is presented to the user and edited
appearing in this final format Some global formatting operations, such as page break or
footnote placement may be deferred until called for with a function key, but it is always
possible to put the document into its final print form on the screen with minimal delay.

The package has the following capabilities:

a. Fonts and graphics: The package allows a character set which can be defined
by users giving the picture for a character by designating its pixels.

Such characters may be arbitrary in size and shape, as small as a pixel or larger
than the screen. Picture objects such as common business graphics or
photographs obtained through a digitizer may be designated as characters, and
may then be manipulated as any character, in particular typed, cut, and pasted
arbitrarily. Any text characters may be made bold or italic, underlined, or raised
or lowered to superscript or subscript positions.

b. Layout Positioning of material may be done at the pixel level, generally in the
style and with the same capabilities as found in modern typesetting machines.

c. Formatting: Automatic section numbering in a variety of styles, page headings
commonly found in books and publications are provided. Footnotes are
positioned properly when page breaks are calculated. Material may be placed in
a number of columns, mixed in with pictures or other displays arbitrarily
placed.

3.3.3 Dynamic Constituents

A more innovative aspect of a compound document is one which provides for inclusion of
capabilities which could not be printed, like moving pictures and voice. A system which
Wang has used for voice is to be able to record voice by turning on a "recorder". As you
speak into the recorder, the voice is recorded digitally, and the indication of the recording
appears in your document as a special character placed in the document as though you had
typed it, one character for 1 second of speech. Having recorded for a while, you may then
play back a segment of speech by placing the cursor on one of the characters indicating
speech, and press the "play" key. The cursor moves along the characters representing
speech as you hear the recorded voice.

The extension of this system is to be able to manipulate ihc characters representing speech
as any ordinary character, using cut and past operation., to move speech data from one
place to another, mailing the speech with the document containing the characters, etc.

An extension of sue1 a speech system is possible with laser disk technology to provide
similar representation for frames of TV images, so one could record, edit, and mail scenes
captured with a TV camera.

27

l^C<j>T^1fc-ti»^»»i^^^yW#fa-|» |i^ i» n—|fcf»i|li|»i !■ »'■■»1*^1

3.4 Performance Requirements

The most important single aspect of a good editor/formatter is performance. The heart of a
editor/formatter is viewing and typing text, and these operations should offer quality
performance, equal to optimized disk and display operations. The systems should expect
to operate on files of several hundred pages. Some potentially time consuming operations
and challenging execution times include:

Typing Speed: A good typist can type about 50ms/character. "Monkey typing", typing
characters as fnst as possible with no content can be done at 25ms/character. Any typing
machine should keep up with the expert typist, ideally with the monkey.

Displaying the Next Page: Computer users can easily scan material at 100 ms/page, and in
systems offering this performance frequently do. Wang uses a figure of about 200ms as
the maximum time to see the next screenful (usually about 200 characters) in a word
processor.

Opening a File: Opening a file should not take more time than the time it takes for an
optimized read of the file. This time would be approximately 10 seconds.

Searching a File: Searching a file should not take more than reading a file. This time
would be approximately 10 seconds.

Closing an Altered File: Closing an altered file should take the same amount of time as
copying the file. This time is approximately 20 seconds.

Cut or Paste the Entire File: Cutting or pasting an entire file should not take longer than
copying the entire file. This would be approximately 20 seconds.

Operations which depend on file system performance should seek to equal optimized
operation of the file system. The above figures for file operations on a 100 page, 500,000
byte file can be attained on the IBM PC/XT under MS/DOS using the hard disk. It takes 10
seconds to read such a file and 20 seconds to copy it

Performance of this kind is achievable and expected in the world of word processors and
personal computers. What are some of the implications for a text processor?

One implication is that a terminal operating at 9600, or even 19,200 baud on a time-shared
computer will not do the job satisfactorily. A bandwidth of 20,000 characters/per second
or 200,000 baud is required to display 2,000 characters in 100 ms. A time sharing system
(for example UNIX on a VAX) is vary hard pressed to keep up with computation of this
demand in any event. A PC like the IBM PC or better as the display device is probably a
requirement, and it should either store its data locally or have at least a 500,000 baud path
to the data.

A second implication is that graphics operations required for the kind of text processing we
recommend must be done with great care. It takes 53ms to simply copy the 16,000 bytes
of data required for the graphics display on the IBM PC. Soft character generation can be
done at speeds approaching our recommendations, but must be carefully optimized.

28

_m ^ji, 111, i i ij ip i, it , r, r,i y ,i > ,i .IIJII.».,,,...,.^ i , -, i, ,-, i, i-, rB fc i'm^y.

4.0 WRITER'S WORKBENCH

4.1 Introduction

This section represents an initial list of tools that should be made available under the general
term "Writer's Workbench" (WWB). It is assumed that such tools will be used to produce
electronically generated information in many formats, including program source code,
reports, formatted text (as in electronic mail), tables, pictures, graphs, etc.

Users need a consistent interface in order to effectively use such a set of tools. Since the
primary purpose of the Writers Workbench is to produce and modify documents, the
primary interface to this set will be a text editor, laealiy the Miter will provide the total
environment for the production of these documents. However, costs, current technology
and schedules means that this will probably not be the case. The user will interface with z
text editor, but the editor will interface with an entire host of tools. This interface with
other tools will be hidden from the user and a single interface will be presented.

4.2 Scope of Requirements

In this section, the scope of the WWB will be outlined. The underlying Ada environment
will be explained, as well as the relationship to other text processing tools. This section
will also list those features that are NOT part of the WWB, although are needed by users of
the WWB.

4.2.1 Environment

This section presents a list of features that a writer will need, and gives a preliminary
specification of how the editor environment will interface with the tool. Probably the most
significant design decision is the information flow between the editor and the tool. The tool
can process the entire document or to process a single object (e.g., word, picture,
paragraph, etc.). The former means that the tool is an "off-line" type of process to be
invoked when the document is completed, while the latter means that the tools is an
"extension" of the basic editing function, and that the user is expecting results immediately.

A primary driving force in these decisions is the design of the basic editor. For the WIS-
Ada Foundation Technology Program - Text Processing Area, the decision was made to
input most textual information via a "What You See Is What You Get" (WYSIWYG) text
editor with an underlying character-oriented editor to process streams of text A companion
section, the General Requirements for a Text Editor/Formatter describes the specifications
for this editor in greater detail. This report describes the additional features needed to
provide a full document preparation environment.

All tools in the WWB are to be written in Ada and run under the CAIS environment. There
is an important need for consistency of the user interface among the various tools. Since
the editor is WYSrWYG with a relatively high resolution raster display to exhibit various
type fonts, the associated tools need the same input/output characteristics. For this reason,
the CAIS terminal packages SCROLL TERMINAL, PAGEJTERMINAL and
FORM TERMINAL are not applicable. It is assumed that I/O for all tools, even those with
simple textual I/O requirements, will use the same graphical interface - e.g., GKS and
window manager - as the text editor. Most of the tools will need to open a window for
display purposes and to present information using the same fonts and formats as the editor.

Most tools will also need to read source document files, which will have embedded
formatting commands. A common Ada package for accessing this text should be provided

29

«^j^JjJMW^^W^*»V^Wg^^' *L "i'*L'>_>.'l' "»> '■■'■»'I. »■.»'»■ """^""I "l 'i1 '»

The amount of information that the editor needs to know about each specific tool should be
minimal. For example, many of the tools return a "picture" that is simply to be inserted
into the source document by the editor. The editor may move this picture to another place
in the document, but it is not the responsibility of the editor to understand the structure of
the "picture". The underlying tool must be called for that

In addition, several of the tools require information from the editor. In order to simplify
such information, the editor will have a feature for enclosing segments of a document (e.g.,
word, sentence, picture, paragraph) and sending this to another tool. With this generalized
interface, tool development can proceed independently of editor development

4.2.2 Omissions

Because the computer screen always displays information as it will appear on the printed
page, there does not need to be a separate formatting language and tool (as NROFF in
UNIX) which is manipulated by the user. However, files may contain such internal
information in order to be able to display such information on the screen. In addition, the
WYSIWYG structure imposes other constraints on the tools which will be described in the
following section.

The specifications for a Structure Editor and the Text Editor are described in the proceeding
sections. This report addresses the additional tools not handled by these two editors.

This specification also ignored tools specifically needed by the program designer and
implementor. While it is fully expected that programmers will use the WWB both for
program development (via the editor) and documentation (via the full WWB features), tools
specifically for program source code production are beyond the scope of this specification.
The class of tools not included here include:

1) Compiler and linker Tools like Ada compilers, linkers, APSEs, etc. are not
included.

2) Source configuration control: Tools to manage source code, dependency
relationships, version control are not included. However, WWB tools will
include some features that are needed since documents have similar problems.

3) Source code analyzers: The set of source code tools like statement analyzers,
complexity analyzers, path analyzers, programming standards checkers,
runtime path monitors, and symbolic debuggers are outside of the scope of
this report.

4.3 Writer's Workbench Tools

In this section, the set of tools making up the WWB will be described. Additional
information, such as whether the tool is provided by the editor, is stand-alone, or is part of
a larger environment, is given.

30

mmiamtf**m/***m*m*i0*m**m*m*i

4.3.1 Text Input

This is the primary function of the Text Editor, which is the main interface with the user at
a terminal. This is described by a companion requirements definition.

4.3.2 Formatter

Since the Text Editor is WYSIWYG, formatting concerns are minimal. There does not
need to be a separate formatting language like NROFF of UNIX. A corollary to this is the
need for a sufficiently high bit-mapped display to simulate graphics and various type fonts
that will appear on the printed version of the document

4.3.3 Equation Input

There is a need to input mathematical and other scientific notation. It is assumed that the
Text (or Structure) Editor will handle this eventually, but initially a separate tool will be
used. Information will be passed to the tool on an equation basis and will return the
formatted text to the editor. When called by the editor, the tool will open a window and use
the same menu system as the editor. The tool will interact with the user to build the
equation, and when completed, will pass the equation back to the calling editor for insertion
into the document

It is assumed that the editor will be able to move the equation around in the document;
however, if it is necessary to modify the equation, then the Equation tool must be invoked.
To the editor, the equation appears as a "formatted picture" and it does not need to
understand its syntax. The tool, however, must pass information using the same notation
as the editor uses for displaying information.

It is expected that this tool will appear as a "popup window" like on the Macintosh
computer. The user will hit an 'equation" menu command, a window will open, the
equation will be built a "finished" menu button is hit and the popup window will
disappear with the equation text now appearing at the appropriate place in the source
document It is expected that most tools will operate in this manner, thus hiding the
differences between the editor and the associated tools.

4.3.4 Table Input

There is a need to format information in tabular form The Text or Structure Editor should
handle this and no additional tool is needed

4.3.5 Fonts

It is important to process documents in a variety of type fonts. The Text Editor should
handle this. It is important that all tools that display textual information use the same fonts
so that the "sameness" of the tools is preserved

4.3.6 Graphics

It is necessary to include diagrams, graphs and other forms of pictures. While it should be
integral to the Text Editor, it is initially assumed that a separate tool will be used to create
pictures. The editor wül invoke a tool that will communicate with the user, who will build
the picture. Upon completion, the tool will return the finished picture to the editor for
insertion into the document

31

•'.•.'.- VLTII*-:'V'■'■'■'", '- ' T*' ** * * * -—'—" '—*■ ' -■■■■■'—■■ ■■■■■■—■ ■ ■ '■'■■ IF—»-

The operation of this tool is similar to the Equation tool. A separate popup window will
appear, and when completed, the tool will return a segment of the document that can be
inserted directly by the editor. It is assumed that the editor can move this completed
diagram, but does not have the knowledge to edit or modify it. If that is needed, then the
Graphics tool needs to be invoked.

4.3.7 Spelling Checker

An important tool is one which checks the spelling of the words in the document This is a
fairly common tool in use today, and is best implemented as a call to the tool to check the
entire document

Input and output for the tool will be the source document file. The tool has to know how to
read the text and ignore formatting information embedded in the file.

The tool requires at least two input dictionaries:

a. A standard dictionary of English words useful for any document.

b. A separate applications dictionary. This second dictionary includes the special
names, acronyms, and terms specific to a single application area.

There is also an optional third dictionary, terms specific to this document While this third
dictionary can be merged with the second-application specific dictionary, a separate third
dictionary allows for each document to have its own set of individual objects. These
dictionaries are effectively merged by the Spelling checker as it looks for misspellings.

The Spelling checker may operate in one of two ways:

a. A file of misspelled words is created. As with other tools, the misspelled
words appears in a separate popup window on the screen. In this mode, the file
can be edited after the source document is checked, and the words either fixed
in the document or else added to one of the dictionaries as a new legal term

b. The document is scrolled in the window, and the misspelled words are
successively highlighted on the screen. At each highlighted word, the user can
tell the spelling checker to either add the word to one of the dictionaries or else
correct the spelling.

In either case, the Spelling checker knows many of the rules for English spelling, and can
determine other forms of words in the dictionary (present, past future tense, plurals,
participles, etc.). When it displays misspellings, it should also display likely candidates for
the correct term from its dictionaries.

4.3.8 Dictionary

An on-line dictionary is useful for text creation. A writer can invoke the tool wiüi a word
and receive its definition. This can also be used as a spelling checker as words are
inserted. Input will be a word of text and output will be a small popup window with the
definition.

32

4.3.9 Thesaurus

This is a companion to the Spelling checker and Dictionary. The editor passes a word to
this tool and receives a list of synonyms in return (again in its own popup window).

4.3.10 Index

The creation of indices will be handled by a tool that is called with the word to be indexed.
Since the document can be updated, which changes the page numbering, for simplicity it is
assumed that the index tool is again called after the document is completed.

When the user wants to add a word to the index, the term will be highlighted by the editor.
This term will then be passed to a separate tool for inclusion into the index. If the
document has been modified, the index printing routine will recompute the index. Keeping
track of creation times like in the UNIX program make can handle this.

4.3.11 Table of Contents

The production of tables of contents, figures, appendices, etc. can be handled by a tool
similar to the indexing tool. Each new title is appended to the table, and after the document
is completed, the tool is again called to process the page numbers.

4.3.12 Fog Index

A tool of growing importance is one which checks the grammar and style of the document
Concepts like the ability of understanding the text (e.g., the complexity of English
sentences, active versus passive voice, the use of acronyms, the vocabulary level, etc.)
have been grouped under the general concept of a "fog" index. It is useful to process all
documents for these features. This tool, similar to the UNIX command "diction" accepts a
source file as input and produces a series of tables describing the language level that has
been used.

A companion tool accepts a part of a document and produces statistics about it For
example, a writer can pass a single sentence or paragraph to the tool, and in a popup
window, an immediate commentary about the sentence can be produced. This can enable
the writer to get immediate feedback on sentence structure and to change the sentence if
necessary.

4.3.13 File Conversion

While this specification proposes an environment for document preparation, it is equally
important to be able to process documents produced on other systems. It is expected that
the files created by these tools will contain information needed to format and display the
information, e.g., font sizes, types, graphical information, etc. Thus tools are needed to
read "foreign" documents and convert them to the internal editor format that is to be
developed.

It is unlikely that a single tool can be developed to handle all such foreign documents,
however, a single tool can be developed to handle many of them Any document
consisting of ASCII (or another character code) characters with a relatively formal syntax
(e.g., a NROFF file) can be described via a context free grammar. A tool can then be built
which reads such a grammar description and a given source file and converts it to the
WWB format needed by the WWB set of tools.

33

It is expected that additional tools might be needed to read specific formats into WWB
format, e.g., specific editors, spreadsheets, etc.

4.3.14 Printing

There is the need to process the documents and turn them into hardcopy on paper via
impact printers, laser printers or film. Languages like Impress already are used to describe
such processing. There is a need for a tool to convert the internal WWB format into these
standard formats for printing the document

4.3.15 Comparator

There is a need for a tool to compare successive versions of a document for changes. Since
the information needs to be presented to the user in the same WYSIWYG format, a simple
file comparator is insufficient. This tool has three basic functions as it compares two
different versions of a document:

a. Generates the set of differences between the two documents as a set of changes
displayed in a window (and saved in a file),

b. Prepares a "script" which can be input to the editor which will convert one
document into the other.

c. Prepares a "merged" document consisting of the old and new text.

The old deleted text will appear in one type font (e.g., italics or change bars' in the
margins), the new inserted text will appear in another font (e.g., bold), while the text that is
unchanged between documents appears in normal type.

Function (a) is useful for determining what has changed between different documents and
function (b) is useful for backup purposes by saving only the new document and a
supposedly short script that can be used to "undo" the latest changes. Function (c) is
useful for producing revised user guides or other text to indicate to the user what has
changed recently. This third feature eliminates the document preparer from manually
keeping track of such tedious changes.

4.3.16 Encryption

There is a need, especially in a military environment, to encrypt information. It is assumed
that encryption is a feature of the underlying WIS-Ada file system and does not need to be
directly addressed here.

4.3.17 Database

There is a need to maintain an underlying database of documents. Again, this is a feature
of the underlying WIS-Ada file system and does not need to be addressed here. It is
assumed that such a database includes aspects of configuration control such as: time and
date of creation, alternative version?;, and dependency relationships. Features present in a
simple version control system like make under UNIX arc assumed to be present

34

■~lVl*'l,*~»STtViO»"Ju'l^ !*■ ■'■ l1* !■■ i'*M .'■ rtFT%%!NwJNp^rts%^ , .,->jMj*. * ««. »%. +L + , rftf^teühäfe

4.3.18 Command Language

There is a need to interface with a command language and the editor needs to build pop up
menus on the screen for the user. This will require coordination with two other task
forces. The graphics task force has been developing the low-level primitives needed to
build such menus on a screen, while the command language task force is working on
primitives for pop up menus. The specification of such windows should be included as
part of these specifications, but is not directly addressed here.

35

■i y'i'i^l'f ■*■'?'■ m '■ ■>"'■ »' ■*' p*»y «■ i ■ !'■ !»■ \ m i tui^a^wp—g—W^P»» t'*L*|"

Distribution List for IDA Paper P-1893

Sponsor

Maj. Terry Courtwright 5 copies
WIS Joint Program Management Office
7798 Old Springfield Road
McLean, VA 22102

Maj. Sue Swift 5 copies
Room 3E187
The Pentagon
Washington, D.C. 20301-3040

Other

Col. Joe Greene 1 copy
STARS Joint Program Office
1211 Fern St., Room C107
Arlington, VA 22202

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Dr. Dan Alpert, Director 1 copy
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm 1 copy
TRW Defense Systems Group
MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel ' 1 copy
S ft ware Engineering Institute
Shadyside Place
580 South Aiken Ave.
Pittsburgh, PA 15231

>?*»». >»».». •: ^>>>>;v>'>.>>:^>?/.v.v;.-.v.>?.f:>>:

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. AJ. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr.
Bethesda,MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

General W.Y. Smith, HQ
Mr. Seymour Deitchman, HQ
Mr. Robin Pirie, HQ
Ms. Karen H. Weber, HQ
Dr. Jack Kramer, CSED
Dr. Robert I. Winner, CSED
Dr. John Salasin, CSED
Mr. Mike Bloom, CSED
Ms. Deborah Heystek, CSED
Mr. Michael Kappel, CSED
Mr. Clyde Roby, CSED
Mr. Bill Brykczynski, CSED
Ms. Katydean Price, CSED
EDA Control & Distribution Vault

1 copy

1 copy

1 copy

1 copy

1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
1 copy
lcopy
1 copy
1 copy
1 copy
1 copy
2 copies
3 conies

&&&&&£&^^ L&jCi^ LA&t. l'^*~'<

